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Near-IR observations

H and K band surveys reveal:

• ∼ 20% of main-sequence stars have ∼ 1% NIR excess

• Excesses around A, F, G, K stars

• Excesses across all main-sequence ages

• No clear correlations with mid- or far-IR excesses

• Some exhibit variability over ∼ 1 year

Absil et al. 2013, 2021; di Folco et al. 2007; Defrère et al. 2012; Ertel et al. 2014, 2016, 2018, 2020; Mennesson et al. 2014;
Millan-Gabet et al. 2011; Nuñez et al. 2017...
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Modelling inferences

Models of the excesses infer:

• Very hot (∼ 1000 K) dust

• Located very close to the star, possibly near sublimation region

• Steep size distribution, over-abundance of small grains

• Sub-micron grains (at or below blow-out size)

• Grains are carbon rich (rather than silicate)

Absil et al. 2006; Akeson et al. 2009; Defrère et al. 2011; Lebreton et al. 2013; Kirchschlager et al. 2017, 2020; Marshall et al.
2016; Sezestre, Augereau & Thébault 2019; Stuber et al. 2023...



Modelling inferences

Models of the excesses infer:

• Very hot (∼ 1000 K) dust

• Located very close to the star, possibly near sublimation region

• Steep size distribution, over-abundance of small grains

• Sub-micron grains (at or below blow-out size)

• Grains are carbon rich (rather than silicate)

Absil et al. 2006; Akeson et al. 2009; Defrère et al. 2011; Lebreton et al. 2013; Kirchschlager et al. 2017, 2020; Marshall et al.
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How are small grains sustained
so close to stars?



Models

Two big problems:

Blowout and Sublimation

• Blowout: small grains blown away by radiation pressure

• Sublimation: hot grains rapidly turn to gas

⇒ Small, hot grains should not survive long!
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Sezestre, Augereau & Thébault 2019, Pearce, Krivov & Booth 2020



PR-drag supply

Debris	disc

E.g. Krivov, Kimura & Mann 1998, Kobayashi et al. 2008, 2009, van Lieshout et al. 2014,
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Simply getting dust close to stars

is not enough to explain hot exozodi
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No model has explained
NIR excesses and their ubiquity



Where next for theory?

1. Are we correctly modelling sublimation, dynamics and emission
of very small, very hot grains?

2. Are we considering the right hot-dust materials?

3. Are NIR and MIR data taken at different times compatible?

4. Are we correct to assume that just one mechanism is responsible
across all star types and ages?

5. Does some unknown mechanism allow hot dust to survive,
or reduce MIR emission?

6. Are we sure that NIR excesses are hot dust?
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What would help?

• More wavelengths at higher resolution!

JWST GO 2053 (Rebollido et al. in prep.)
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What would help?

• Anything that hints at dust distribution



Conclusions

• Near-IR excesses are interpreted as very hot dust very close to stars

• No model has fully explained this phenomenon and its ubiquity

• Upcoming theory will assess our assumptions and explore new ideas

• Data at more wavelengths, with higher resolution, would help

• Simultaneous NIR and MIR observations would also help

Questions?
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